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Abstract
In this work, we address the problem of providing job recommendations in an online 
session setting, in which we do not have full user histories. We propose a recom-
mendation approach, which uses different autoencoder architectures to encode ses-
sions from the job domain. The inferred latent session representations are then used 
in a k-nearest neighbor manner to recommend jobs within a session. We evaluate our 
approach on three datasets, (1) a proprietary dataset we gathered from the Austrian 
student job portal Studo Jobs, (2) a dataset released by XING after the RecSys 2017 
Challenge and (3) anonymized job applications released by CareerBuilder in 2012. 
Our results show that autoencoders provide relevant job recommendations as well 
as maintain a high coverage and, at the same time, can outperform state-of-the-art 
session-based recommendation techniques in terms of system-based and session-
based novelty.

Keywords Job recommendations · Session-based recommendation · Autoencoders · 
Session embeddings · Accuracy · Novelty

1 Introduction

People increasingly use business-oriented social networks such as LinkedIn1 or 
XING2 to attract recruiters and to look for jobs (Kenthapadi et al. 2017). Users of 
such networks make an effort to create personal profiles that best describe their 
skills, interests, and previous work experience. Even with such carefully structured 
content, it remains a non-trivial task to find relevant jobs (Abel 2015). As a conse-
quence, the field of job recommender systems has gained much traction in academia 
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and the industry (Lacic et al. 2019; Siting et al. 2012). The main challenge that job 
recommender systems tackle is to retrieve a list of jobs for a user based on her pref-
erences or to generate a list of potential candidates for recruiters based on the job’s 
requirements (Hong et al. 2013).

Besides, most online job portals offer the option to browse the available jobs 
anonymously in order to attract users to the portal. As a consequence, the only data 
a recommender system can exploit are anonymous user interactions with job post-
ings during a session. In other words, the problem of recommending jobs is a ses-
sion-based recommendation problem (Jannach and Ludewig 2017). That is, the aim 
is to recommend the next relevant job in an anonymous session.

In our ongoing work with the Austrian start-up Studo,3 we have started to address 
the problem of recommending jobs in a session-based environment. In their student 
job portal Studo Jobs,4 we have observed an increasing volume of anonymous user 
sessions that look for new jobs.5 For example, over the past six months, anonymous 
job-related browsing has doubled from approximately 30,000 to 60,000 job interac-
tions. Therefore, in this paper, we address the problem of recommending jobs in a 
session-based environment.

Recently, neural networks have gained attention in the context of session-based 
recommender systems (e.g., Hidasi et al. 2015; Li et al. 2017; Lin et al. 2018; Wu 
et al. 2018, 2019; Yuan et al. 2019). The idea is to extract latent information about a 
user’s preferences from anonymous, short-lived sessions. For example, autoencoders 
(Kramer 1991) are neural networks designed to learn meaningful representations, 
i.e., embeddings, and to reduce the dimensionality of input data. Example applica-
tions are data compression (Theis et al. 2017), clustering and dimensionality reduc-
tion (Makhzani et al. 2015) as well as recommender systems, where they have been 
used to find latent similarities between users and items and to predict user prefer-
ences (Sedhain et al. 2015; Strub et al. 2016).

Their ability to preserve the most relevant features, while reducing dimension-
ality, inspired our idea to explore the use of autoencoders to infer latent session 
representations in the form of embeddings and to use these embeddings to gener-
ate recommendations in a k-nearest-neighbor manner. To that end, in this paper, 
we introduce a recommendation approach, which employs different autoencoder 
architectures, (1) a classic autoencoder (Kramer 1991), (2) a denoising autoencoder 
(Vincent et al. 2008) and (3) a variational autoencoder (Jordan et al. 1999), to learn 
embeddings of job browsing sessions. The inferred latent session representations 
are then used in a k-nearest neighbor manner to recommend jobs within a session. 
Besides, we use two types of input data to train and test our approach, i.e., interac-
tion data from sessions and content features of job postings, for which interactions 
took place during a session. We assess the performance of our approach in the form 

3 https ://studo .co.
4 The jobs platform in Studo, which is the predecessor of the Talto career platform (https ://talto .com)
5 We observe this trend independent from the changes in authenticated sessions, which fluctuate heavily 
over the year. The cause of this trend is that both the total number of sessions and the average ratio of 
anonymous sessions to authenticated sessions are growing.

https://studo.co
https://talto.com
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of offline evaluations on three datasets from the job domain: firstly, a dataset col-
lected from the Austrian online student job portal Studo Jobs; secondly, the job data-
set that was provided by XING after the RecSys Challenge 2017 (Abel et al. 2017); 
and finally, a dataset from a Kaggle competition on job recommendation sponsored 
by CareerBuilder. Our approach is compared to the state-of-the-art session-based 
recommender approaches (Hidasi and Karatzoglou 2018; Hidasi et al. 2015; Jannach 
and Ludewig 2017; Ludewig and Jannach 2018; Rendle et al. 2009) not only with 
respect to accuracy but also in terms of system-based and session-based novelty as 
well as coverage (Zhang et al. 2012). This is grounded in the growing awareness that 
factors other than accuracy contribute to the quality of recommendations (Herlocker 
et al. 2004; McNee et al. 2006). Moreover, novelty is especially an important metric 
for the job domain since applying to popular jobs may decrease a user’s satisfaction 
due to high competition and less chance of getting hired (see e.g., Kenthapadi et al. 
2017).

Contributions and findings The main contributions of this paper and the cor-
responding findings are as follows:

– We present a recommendation approach, which uses different autoencoder archi-
tectures to encode sessions from the job domain. We use the inferred latent ses-
sion representations in a k-nearest neighbor manner to recommend jobs within a 
session.

– We compare our approach to methods from recent work (Hidasi and Karatzo-
glou 2018; Hidasi et al. 2015; Jannach and Ludewig 2017; Ludewig and Jannach 
2018; Rendle et al. 2009) on the state-of-the-art session-based recommendation.

– We evaluate the efficacy of our approach on three datasets: firstly, a proprietary 
dataset collected from the online student job portal Studo Jobs; secondly, a pub-
licly available job dataset that was provided by XING after the RecSys Challenge 
2017; and thirdly, a publicly available job dataset from the job platform Career-
Builder.

– We train and test the autoencoders on two sources of job-related data: (1) interac-
tion data from sessions and (2) content features of job postings, for which inter-
actions took place during a session. Our results show that variational autoencod-
ers provide competitive job recommendations in terms of accuracy compared to 
the state-of-the-art session-based recommendation algorithms.

– We additionally evaluate all session-based job recommender approaches in terms 
of the beyond-accuracy metrics with system-based and session-based novelty as 
well as coverage. We find that autoencoders can produce more novel and surpris-
ing recommendations compared to the baselines and, at the same time, provide 
relevant jobs for the user while maintaining a high coverage.

– We provide the implementation of our approach as well as a more detailed hyper-
parameter description in a public GitHub repository6 in order to foster reproduc-
ible research.

6 https ://githu b.com/lacic /sessi on-knn-ae.

https://github.com/lacic/session-knn-ae
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Organization of the paper The remainder of the paper is structured as follows: In 
Sect. 2, we discuss related work. Section 3 outlines our approach to employ autoen-
coders for session-based job recommendation. Section  4 describes the baseline 
approaches, datasets, evaluation protocol and performance metrics. Section 5 elabo-
rates on the results of our experiments. Finally, in Sect. 6, we conclude the paper 
and provide an outlook on our plans for future work.

2  Related work

At present, we identify two lines of research that are related to our work: (1) job rec-
ommender systems and (2) session-based recommender systems.

Job recommender systems Job recommender systems address a particular rec-
ommendation problem, in that a company might want to hire only a few candidates, 
while classic recommender systems typically recommend items that are relevant for 
a large number of users (Kenthapadi et al. 2017). There are two directions of the rec-
ommendation problem: One is to recommend jobs to a user given her user profile, 
while the other is to recommend candidates for a job posting. The directions of both 
problems can even be combined using a reciprocal recommender (Mine et al. 2013).

Research on recommending jobs to users has mostly focused on improving accu-
racy with methods like collaborative- and content-based filtering or hybrid combina-
tions of both (Al-Otaibi and Ykhlef 2012; Zhang and Cheng 2016). One example 
of a hybrid job recommendation system that uses interaction data as well as content 
data is the work of Liu et al. (2017). Here, the recommendation problem corresponds 
to first searching for matching candidates for a given job and then recommending 
this job to these candidates. In another job recommender system presented in Hong 
et al. (2013), the authors propose to first cluster user profiles based on their charac-
teristics and then to design separate recommendation strategies for each cluster.

In 2016, XING (a career-oriented social networking site based in Europe) organ-
ized a challenge for the ACM RecSys conference to build a job recommendation 
system (Abel et  al. 2016) that recommends a list of job posts with which a user 
might interact in the upcoming week. The winning approach (Xiao et al. 2016) used 
a hierarchical learning-to-rank model to generate the recommendations, which cap-
tures semantic relevance, temporal characteristics of a user’s profile information, 
the content of job postings and the complete log of user activities. The anonymized 
challenge dataset has since been employed, for instance, by Mishra and Reddy 
(2016), who built a gradient boosting classifier to predict if a given user will like a 
particular job posting. In 2017, XING organized another recommender challenge for 
the ACM RecSys conference (Abel et al. 2017). Here, the recommendation problem 
was turned into a search for suitable candidates when a new job posting is added to 
the system (i.e., the task constitutes a cold-start problem (Lacic et al. 2015)). The 
winning approach (Volkovs et  al. 2017) spent considerable effort on feature engi-
neering to train a gradient boosting algorithm, which determines the probability of 
whether or not a given candidate user profile is suited for a target job posting.

In our work, we employ the most recent version of the dataset provided by XING 
after the RecSys challenge 2017 to evaluate a range of approaches to provide job 
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recommendations in anonymous sessions. Besides, in our experiments, we use a 
proprietary dataset gathered from Studo Jobs, an Austrian student job portal, as well 
as a publicly available dataset from the job portal CareerBuilder.

Since in our work, we focus on session-based job recommendations, in the next 
paragraph, we summarize related work on session-based recommender systems.

Session-based recommender systems Most recommender systems require a user 
preference history in the form of explicit or implicit user interactions. Based on the 
user preference history, a user profile is created, which is the basis for approaches 
such as matrix factorization (Koren et al. 2009). However, it is not always possible 
to create such user profiles, e.g., to protect the privacy of users or due to inadequate 
resources. As a remedy, session-based recommender systems (Hidasi et  al. 2015) 
have been proposed, which model a user’s actions within a session, i.e., a short 
period when the user is actively interacting with the system. A simple approach 
toward session-based recommendation is to recommend similar items using 
item–item similarity as proposed by Sarwar et  al. (2001). Hidasi and Tikk (2016) 
propose a general factorization framework that models a session using the average 
of the component latent item representations. Shani et al. (2005) use Markov deci-
sion processes to compute recommendations that incorporate the transition prob-
ability between items. Jannach and Ludewig (2017) use co-occurrence patterns as a 
basis for session-based recommendations. They report comparable and often even a 
superior performance of a heuristics-based nearest neighbor method (KNN) to gen-
erate recommendations in a session-based setting in comparison with competitive, 
state-of-the-art methods based on neural architectures. Hence, in our work, we also 
use two KNN-based methods, i.e., sequential session-based KNN and vector multi-
plication session-based KNN (Ludewig and Jannach 2018) as baseline algorithms 
due to their good performance and scalability as reported in related works (Jannach 
and Ludewig 2017; Kamehkhosh et al. 2017; Ludewig and Jannach 2018).

In general, applying neural networks in session-based recommendation systems 
has gained much attention in recent years. For instance, recent work (Tuan and 
Phuong 2017; Yuan et  al. 2019) uses convolutional networks to produce session-
based item recommendations. Song et al. (2016) proposed a neural architecture that 
combines both long-term and short-term temporal user preferences. They model 
these preferences through different long short-term memory (LSTM) networks in a 
stepwise manner. In this vein, Lin et al. (2018) introduce STAMP (short-term atten-
tion/memory priority) that simultaneously incorporates a user’s general interest (i.e., 
long-term memory) and current interest (i.e., short-term memory). Wu et al. (2018) 
present an architecture for session-based recommendations that is based on graph 
neural networks. Here, using an attention network, each session is also represented 
by a session user’s global preference and their current interest. The authors of Li 
et  al. (2017) propose NARM (neural attentive recommendation machine), which 
uses an attention mechanism in a hybrid encoder to model the sequential behavior 
of a user and to extract the user’s main purpose from the current session. As the 
authors show, this approach is specifically well suited to model long sessions.

Out of the different neural architectures, recurrent neural networks have 
become particularly popular for the task at hand (Chatzis et  al. 2017; Hidasi 
et al. 2015; Smirnova and Vasile 2017). In the earlier mentioned work of Hidasi 



622 E. Lacic et al.

1 3

et  al. (2015), the authors showed that a recurrent neural network (RNN)-based 
approach can model variable-length session data. Other related papers on sequen-
tial data either improve the original algorithm (Hidasi and Karatzoglou 2018; 
Tan et  al. 2016) or extend it by capturing additional information such as con-
text (Twardowski 2016) or attention (Li et al. 2017). In later work, Hidasi et al. 
(2016) introduce an architecture (i.e., pRNN) that combines multiple RNNs to 
model sessions via clicks as well as via features of the clicked items such as con-
tent information. Here, each RNN handles a particular feature, such as the clicked 
item’s textual representation. The authors show that, given the optimal training 
strategy, pRNN architectures can result in higher performance compared to fea-
ture-less session models. Due to its ability to incorporate content features of job 
postings in its model in addition to interactions within sessions, in our work, we 
use pRNN as a baseline approach as we also take into account content features of 
job postings as well as interactions.

In our work, we employ autoencoders, a type of neural network that can reduce 
the dimensionality of data (Kramer 1991), to infer latent session representations 
and to generate recommendations. Specifically, we propose to employ a classic 
autoencoder (Kramer 1991), a denoising autoencoder (Vincent et  al. 2008) and a 
variational autoencoder (Jordan et al. 1999) to model and encode sessions. In this 
vein, we find that collaborative denoising autoencoders (CDAE) (Wu et al. 2016) are 
related to our work. CDAE utilize a denoising autoencoder (Vincent et al. 2008) by 
adding a latent factor for each user to the input. A denoising autoencoder can learn 
representations that are robust to small, irrelevant changes in the input. In CDAE, 
the number of parameters grows linearly with the number of users and items, which 
makes it prone to overfitting (Liang et al. 2018). Also related to our work is neural 
collaborative filtering (He et al. 2017), where a neural architecture, which can learn 
any function from data, replaces the dot product between the latent user and item 
features. However, this model has a similar issue as CDAE and, thus, grows linearly 
with the number of sessions and jobs as the authors of Liang et al. (2018) describe.

Finally, with respect to evaluation, to the best of our knowledge, related work on 
evaluating session-based recommender systems with beyond-accuracy metrics such 
as system-based and session-based novelty, or coverage is scarce. Only in recent 
work, Ludewig and Jannach (2018) evaluate session-based recommender systems 
in light of coverage and popularity bias. With this work, we aim to contribute to this 
sparse line of research as we evaluate all approaches in this work with respect to 
system-based and session-based novelty as well as coverage, in addition to accuracy.

3  Approach

In this section, we describe our approach toward a session-based job recommender 
system using autoencoders. In Sect. 3.1, we first describe how we encode sessions 
with autoencoders. Then, in Sect. 3.2, we outline our method to model the input ses-
sion vectors from interactions and content features. Finally, Sect. 3.3 details how we 
compute session-based job recommendations.
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3.1  Encoding sessions using autoencoders

Autoencoders are a type of neural network, which were popularized by Kramer 
(1991) as a more effective method than principal component analysis (PCA) with 
respect to describing and reducing the dimensionality of data. Autoencoders are 
trained in an unsupervised manner where the network is trying to reconstruct the 
input by passing the information to the output layer through a bottleneck architec-
ture. For our work, we employ three variants of autoencoder architectures to repre-
sent a session: (1) a classical autoencoder (AE), (2) a denoising autoencoder (DAE) 
and (3) a variational autoencoder (VAE).

Autoencoder (AE) The simplest form of an autoencoder has only one hidden 
layer (i.e., the latent layer) between the input and output (Bengio et al. 2007). The 
latent layer takes the vector xs ∈ ℝ

D , which represents the session and maps it to a 
latent representation zs ∈ ℝ

K using a mapping function:

where W is a D × K weight matrix, b ∈ � is an offset vector and � is usually a non-
linear activation function. Using zs , the network provides a reconstructed vector 
x̂s ∈ ℝ

D , which is calculated as:

By adding one or more layers between the input and latent layer, we create an 
encoder and, correspondingly, a decoder by doing the same between the latent and 
output layer, hence the name autoencoder. During inference, we use the output of the 
latent layer (i.e., the information bottleneck) to represent the latent session vector zs.

In our experiments, for � , we use rectified linear units (ReLU7) (Nair and Hinton 
2010) activation function for all layers except the final output layer, where a sigmoid 
activation function is used. Furthermore, we use a Ds − 256 − 100 − 256 − Ds net-
work architecture,8 where Ds is the dimension of the original vector representation 
of the session that is encoded using job interactions with or without the correspond-
ing job content data. To train the network, we use RMSprop (Tieleman and Hinton 
2012) and minimize the Kullback–Leibler divergence (Fischer and Igel 2012).

We also experimented with adding additional encoder/decoder layers as well as 
increasing the layer size (e.g., layers with a size of 1000) but did not see any major 
performance differences besides an increased training complexity. Both Adam and 
RMSProp are two of the most popular adaptive stochastic algorithms for training 
deep neural networks. In our work, we focused on RMSProp.

Denoising Autoencoder (DAE) As shown by Vincent et  al. (2008), extending 
autoencoders by corrupting the input can show surprising advantages. The idea of a 

zs = h(xs) = �(WTxs + b)

x̂s = 𝜎(W �zs + b�)

7 For an input x, relu(x) = max(0, x).
8 We also tested higher values for the dimension of the latent layer (e.g., layers with a size of 1000) as 
well as adding additional encoder/decoder layers, but did not find enough accuracy improvement that 
would justify the additional computation burden when calculating session similarities in real time.
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denoising autoencoder is to learn representations that are robust to small, irrelevant 
changes in the input. Corrupting the input can be done on either one or multiple lay-
ers before we calculate the final output.

In our DAE model, we get a corrupted input x̂ using the commonly employed 
additive Gaussian noise on the input layer with a probability of 0.5. Like earlier, 
we use the same Ds − 256 − 100 − 256 − Ds architecture, ReLU and sigmoid activa-
tion functions, the RMSprop optimization algorithm and the Kullback-Leibler diver-
gence as loss function.

Variational Autoencoder (VAE) Another approach to extract the latent repre-
sentation zs is to use variational inference (Jordan et al. 1999). For that, we approx-
imate the intractable posterior distribution p(zs|xs) with a simpler variational dis-
tribution q�(zs|xs) , for which we assume an approximate Gaussian form with an 
approximately diagonal covariance:

where � and �2 is the encoded output given the input vector representation xs of 
a session. To be more precise, we use additional neural networks as probabilistic 
encoders and decoders. Most commonly, this is done using a multilayered percep-
tron (MLP). For the above-mentioned q�(zs|xs) , we calculate:

where {W1,W2,W3, b1, b2, b3} are weights and biases of the MLP and are part of 
variational parameters � . While decoding, we sample the latent representation and 
produce a probability distribution �(zs) over all features from the input session vec-
tor xs . As we deal with implicit data, to calculate the probabilities, we let p�(xs|zs) 
be a multivariate Bernoulli (Kingma and Welling 2013), whose probabilities in the 
MLP we calculate as:

where f� is an element-wise nonlinear activation function (i.e., in our case a sig-
moid) and � = {W4,W5, b4, b5} are weights and biases of the MLP.

The generative model parameters � are learned jointly with variational parameters 
� by optimizing the marginal likelihood of the data. The objective is thus to mini-
mize the distance between the variational lower bound L(�,�, x) and a certain prior 
(Kingma and Welling 2013; Liang et al. 2018), which in case of VAEs is the Kull-
back–Leibler divergence (Fischer and Igel 2012) of q�(zs|xs) and p(zs|xs) . As we 
are sampling zs from q� in the variational lower bound, in order to learn the model, 
we need to apply the reparametrization trick (Kingma and Welling 2013; Rezende 
et al. 2014) by sampling � ∼ N(0, IK) (also seen later in Fig. 2) and reparametrize 

log q�(zs|xs) = logN(zs;�, �
2I)

� = W2 h + b2

log �2 = W3 h + b3

h = relu (W1 xs + b1)

log p(xs|zs) =
D∑

i=1

xsi log yi + (1 − xsi) ⋅ log(1 − ysi)

ys = f�(W5 relu (W4 zs + b4) + b5 )
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zs = 𝜇𝜙(xs) + 𝜖 ⊙ 𝜎𝜙(xs) . Hence, the gradient with respect to � can be back-propa-
gated through the sampled zs.

In our experiments, we utilize the described VAE model with a similar archi-
tecture as previously mentioned: Ds − 256 − 100 − 256 − Ds (i.e., the encoder and 
decoder MLPs are symmetrical). Furthermore, for all three autoencoder architec-
tures, we experiment on additionally incorporating the self-attention mechanism 
(e.g., as Lin et al. 2017; Parikh et al. 2016; Vaswani et al. 2017 do in their work) on 
the encoder layer.

3.2  Modeling session vectors

The input for any of the three autoencoder variants is a binary-encoded representa-
tion of the session xs . As shown in Fig. 1, we propose the following two variants of 
how to train the autoencoder models that will be used to infer the latent representa-
tion zs.

Variant 1: Modeling from interactions We construct xs by only using the job 
interaction data of a given session. In the remaining paper, we denote the three 
autoencoder models, which only use job interaction data as AEInt , DAEInt and 
VAEInt . We create session vectors of size ns , where ns is the number of jobs in the 

F1

AEInt

Session Interactions

J4 J3J1

J1 1

1 0 0

J1 J2 Jn

1 1

Session Representation

0 1

J4 0 1 1

J3 1 0 0

1 0 0 0 1 1 1 0 1

Jr  ( = J3 ) Jr-1 ( = J4 ) Jr-2  ( = J1 ) 

0 0 0

Jr

Jr-1

Jr-2

F2 Encoded Job Features

r =  index of the last job 
              interaction in the session

m =  maximal number of job 
        interactions to consider

AEComb

Jr-mJ3 J4

n =  number of jobs 
    in the dataset

Session Representation

Fig. 1  Modeling session vectors. The input of the utilized autoencoder is a session representation, which 
can be binary-encoded using job interactions with or without the corresponding job content data. For 
example, a standard autoencoder that only considers interaction data (denoted as AE

Int
 ) will expect a 

binary encoded vector with a dimension that equals the number of jobs in the underlying dataset. To 
combine this with job content data (denoted as AE

Comb
 ), we use the most recent m job interactions within 

the session and generate a binary encoding of the job content features in descending order
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underlying dataset. Each job is then assigned an index in this vector. The interac-
tions on the corresponding job indices are set to 1, while we set the rest to 0. One 
possible drawback of this approach is that due to the ephemeral nature of job post-
ings, we would need to frequently retrain the utilized model in order to consider new 
jobs coming to the system (Matuszyk et al. 2015). Moreover, this will also impact 
the size of the input vector xs , which will constantly be increasing with every new 
job.9

Variant 2: Modeling from interactions and content In order to mitigate the 
need to retrain the autoencoder models frequently, we also propose to leverage the 
content of job postings, with which anonymous users have interacted during a ses-
sion (i.e., combine interaction data with content data). Given a set of content fea-
tures F = {f1,… , fl} , we first convert each job interaction in a session to a binary 
vector of size nj =

∑l

i=1
dist(fi) , where dist(fi) gives the number of distinct values of 

a job feature fi . Each feature value is then assigned an index in this vector, and the 
existing feature values are set to 1, while the rest are 0. To create the session vector 
xs , starting from the most recent job interaction, we concatenate the last m converted 
job interactions. In case the number of job interactions is less than m, xs is right-pad-
ded with 0-filled job vectors, which results in xs being of size nj × m . We denote the 
three autoencoder models that use the content features of job interactions as AEComb , 
DAEComb and VAEComb . Note also that we introduce the parameter m to end up with 
an input vector xs that has a fixed length and a model that is less sensitive to new job 
postings that are added to the system.

3.3  Computing session‑based job recommendations

We formulate the recommendation problem as follows: Given a target session st , in 
which there was an interaction with at least one job ji from the set of available jobs 
J = {j1,… , jn} , the task is to predict the next jobs this user will likely interact with. 
In order to compute recommendations, as shown in Fig. 2, we first extract the output 
zs for the sessions that are available in the training set. During prediction time, for 
a given target session st , we proceed to infer its latent representation first to find the 
top-k similar past sessions. In order to reduce the computational burden and allow 
for efficient recommendation,10 we extract a subset of all sessions, where the users 
have interacted with the last job in st . Using zs , we compute the cosine similarity 
between the respective target and candidate session and use the top-k similar ses-
sions to recommend jobs. Jobs are then ranked based on the following score:

sKNN(st, ji) =

n∑

i=1

sim(st, si) × 1si(ji)

10 The number of stored sessions can easily pass the million mark and cause for unnecessary calcula-
tions once a recommender system is running for a longer period.

9 This effect can, however, be damped by removing obsolete job postings, but would still result in a con-
stantly changing input dimension.
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where 1si(ji) is 1 if the candidate session si contains the job ji and 0 otherwise (as in 
Bonnin and Jannach 2015; Jannach and Ludewig 2017).

4  Experimental setup

In this section, we present the baseline approaches and the datasets we used for this 
study. We outline the evaluation protocol and the performance measures, which we 
employed to compare all approaches. In our evaluation, we contribute to the limited 
amount of related work (e.g., like Ludewig and Jannach 2018) as we evaluate all 
approaches both concerning accuracy and beyond-accuracy measures (i.e., system-
based and session-based novelty as well as coverage).

4.1  Baseline approaches

We utilize well-known baselines and compare our approach to the following state-
of-the-art methods (Ludewig and Jannach 2018) for session-based recommendation:
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Fig. 2  Computing session-based job recommendations. Using the trained autoencoders, we infer latent 
representation for (1) sessions in the training data and (2) the current target session for which we recom-
mend jobs. Jobs from the top-k similar candidate sessions (filtered by the currently interacted job post-
ing) are recommended to the target session
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POP A simple and yet often strong baseline for session-based recommenda-
tion is the popularity-based approach. As in Hidasi et al. (2015), the results are 
always the same top-k popular items from the training dataset.

iKNN The item-KNN approach recommends jobs that are similar to the actual 
job that is interacted with during the session. As in Hidasi et al. (2015), we use 
the cosine similarity and include regularization to avoid coincidental high simi-
larities between rarely visited jobs.

BPR-MF One of the commonly used matrix factorization methods for implicit 
feedback is Bayesian personalized ranking (Rendle et al. 2009). As in Hidasi et al. 
(2015), we use the average of job feature vectors of the jobs that had occurred 
in the current session as the user feature vector to apply it directly to generate 
a session-based recommendation. That is, similarities of the feature vectors are 
averaged between a candidate job and the jobs of the current session.

Bayes Following the Bayesian rule, we calculate the conditional probability of 
a job xi being clicked based on the previous r interactions of the current session s:

This approach is, from a computational perspective, inexpensive to calculate and run 
in an online setting.

GRU4Rec Recently, Hidasi et  al. (2015) showed that recurrent neural net-
works are excellent models for data generated in anonymous sessions. GRU4Rec 
combines gated recurrent units with a session-parallel mini-batch training pro-
cess, and it incorporates a ranking-based loss function. For our study, we use 
the most recent improvement in GRU4Rec (Hidasi and Karatzoglou 2018). This 
GRU4Rec version employs a new class of loss functions tied together with an 
improved sampling strategy.

pRNN Another recent advancement of Hidasi et  al. (2016) shows how to 
incorporate item features into the representation of neural networks. They pro-
pose several different architectures based on GRU units and ways to train them. 
We use a parallel architecture with simultaneous training for our experiments. 
This approach utilizes both a one-hot encoding of the current item interaction and 
an item representation as inputs for the subnets. The trained model uses the TOP1 
loss function as defined in Hidasi et al. (2015).

sKNN Recent research has shown that computationally simple nearest-neigh-
bor methods can be effective for session-based recommendation Jannach and 
Ludewig (2017). The session-based KNN approach first determines the k most 
similar past sessions in the training data. Sessions are encoded as binary vectors 
of the item space, and a set of k nearest sessions is retrieved for the current ses-
sion using cosine similarity. The final job score is calculated by aggregating the 
session similarity over all the sessions that contain the candidate job.

V-sKNN Vector multiplication session-based KNN (V-sKNN) is a variant of 
sKNN that considers the order of the elements in a session. The idea here is to 
create a real-valued vector by putting more weight on recent interactions, where 

P(xi�xs1 ,… , xsr ) =

∏r

j=1
P(xsj �xi) × P(xi)
∏r

j=1
P(xsj )
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only the very last element of the session obtains a value of “1” (Ludewig and Jan-
nach 2018). For this, a linear decay function is used that depends on the position 
of an element within the session.

S-sKNN Sequential session-based KNN (S-sKNN) puts more weight on ele-
ments that appear later in the session in a similar way as V-sKNN (Ludewig and 
Jannach 2018). This effect is, however, achieved by giving more weight to neigh-
boring sessions which contain recent items of the current session.

4.2  Datasets

For this study, we employ three different datasets from the job domain. The first 
dataset, Studo, is a proprietary dataset collected from the online platform Studo 
Jobs, a job-seeking service for university students. The second dataset RecSys17 
is the latest version of the data provided by XING after the RecSys Challenge 

Table 1  Statistics of the datasets Studo, RecSys Challenge 2017 (i.e., RecSys17) and CareerBuilder12

While Studo has more sessions and job interactions, the RecSys Challenge 2017 dataset has more job 
postings that can be recommended. CareerBuilder12 is the largest dataset, but also has the highest spar-
sity

Dataset # Interactions # Sessions # Jobs Sparsity (%)

Studo 191,259 26,785 1111 99.36
RecSys17 55,380 16,322 15,686 99.98
CareerBuilder12 661,910 120,147 197,590 99.99
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Fig. 3  Number of interactions based on the interaction type (top) and the distribution of session sizes 
(bottom) is shown for the RecSys Challenge 2017 (left) and Studo (middle) and CareerBuilder12 data-
sets. Overall, the distribution of interaction types is similar between the datasets where the click, view 
and apply interactions mostly dominate
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2017 (Abel et al. 2017). The third dataset CareerBuilder12 is from an open Kag-
gle competition, called Job Recommendation Challenge,11 provided by the online 
employment Web site CareerBuilder. The statistics of all three datasets are given 
in Table 1. As seen, all datasets have a high sparsity: 99.36% for Studo, 99.98% 
for RecSys17 and 99.99% for CareerBuilder12. Studo contains a higher num-
ber of sessions when compared to RecSys17 but has a much smaller number of 
available jobs that can we can recommend. CareerBuilder12 is the largest dataset 
of the three, but only contains job applications as interactions. In the next para-
graphs, we describe the three datasets in more detail.

Studo The dataset contains job interactions from anonymous user sessions from a 
period of three months between September 2018 and December 2018. All job inter-
actions in this dataset have an anonymous session id assigned to them. As seen in 
the top row of Fig. 3, the Studo dataset contains four interaction types, i.e., job view, 
show company details, apply and share job. As shown at the bottom row of Fig. 3, 
the log histogram of session sizes follows a skewed pattern, which means that most 
sessions have a small number of interactions. In particular, every session has 6.98 
interactions on average and a median of 5 interactions.

Concerning content features reported in Table 2, in the Studo dataset, we utilize 
seven content features of job postings. The Job State determines 1 out of 9 Austrian 
federal states. Job Country indicates whether the job is in Austria or some other 
country. The Job Begins Now feature specifies whether the job candidate can start 
immediately working on the advertised position. We relate this feature to the Is 
Payed feature from the RecSys17 dataset as companies typically pay for job post-
ings to be shown if they urgently need candidates. Studo’s Job State is similar to the 
Region feature from RecSys17, the same holds true for Studo’s Employment Type, 

Table 2  Binary-encoded content features of our three datasets

For Studo, concatenating all job features results in a job vector with a dimensionality of 60. For the Rec-
Sys17 dataset, this results in a job vector with a dimension of 79. For the CareerBuilder12 dataset, this 
results in 115 dimensionality vectors. We also put the same annotation on content features, which have a 
similar meaning in both datasets. The Job Discipline feature is the only one in Studo, which represents a 
combination of the Discipline Id and Industry Id features from the RecSys17 dataset

Studo RecSys17 CareerBuilder12

Content feature Encoding Content feature Encoding Content feature Encoding

Job state† 10 Region† 17 State† 55
Job country‡ 1 Country‡ 4 Requirement topic 20
Job begins now 1 Is payed 2 Title topic 20
Job effort 1 Career level 6 Description topic 20
Job language 1 Industry Id†† 23
Job discipline†† 40 Discipline Id†† 22

Employment type‡‡ 6 Employment‡‡ 5

11 https ://www.kaggl e.com/c/job-recom menda tion.

https://www.kaggle.com/c/job-recommendation
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which can be related to the Employment feature from RecSys17. Job Effort indicates 
whether the concrete working hours are specified; otherwise, the default working 
hours are assumed. The Job Language feature specifies whether the job requires the 
usage of either the German or English language. Furthermore, a job posting can also 
be described by a subset of 40 different Job Discipline labels and a subset of 6 dif-
ferent Employment Type labels. The Job Discipline feature can actually be regarded 
as a combination of the Discipline Id and Industry Id features from the RecSys17 
dataset. As described in Sect. 3.2, we use all content features from the Studo dataset 
to create a binary-encoded job vector with a dimensionality of 60. Finally, we have 
77.7% uniquely encoded job vectors, which consist, on average, of 11.8% assigned 
feature values.

RecSys17 The dataset contains six different interaction types that were performed 
on the job items. For this study, we only keep the click, bookmark and apply inter-
actions (as seen on the top of Fig. 3). We remove the delete recommendation and 
recruiter interest interactions as these are irrelevant in our setting. Moreover, we dis-
card impression interactions as they are created when XING shows a job to a user. 
As stated by Bianchi et al. (2017), an impression does not imply that the user has 
interacted with the job. The dataset consists of interactions from a period of three 
months (from November 6, 2016, until February 3, 2017). We manually partition the 
interaction data of the RecSys dataset into sessions using a 30-minute idle threshold 
(as in Quadrana et al. 2017). The resulting sessions have, on average, 3.62 interac-
tions per session and a median of 3 interactions.

Also, the RecSys17 dataset contains content features about the job postings, such 
as career level or type of employment. From this set, we select seven features as con-
tent-based input for our approaches and discarded the numeric IDs of title and tags, 
since those would lead to very big encodings. The chosen features closely resemble 
the features that are present in the Studo dataset. More specifically, from RecSys17, 
we use the following features, as shown in Table 2: Region, Employment, Is Payed, 
Discipline Id, Career Level, Industry Id and Country. The Region content feature is 
a categorical feature with 17 possible value, like the Employment feature with 5 val-
ues. The Is Payed content feature indicates if the posting is a paid for by a company. 
The Discipline Id is a categorical feature with 22 different values that represent 
disciplines such as consulting or human resources. The categorical feature Career 
Level can take 7 values, Industry Id represents industries such as finance, and Coun-
try denotes the code of the country in which the job is offered.12 Overall, we end up 
with a job vector that has dimensionality of 79. We find that only 33.58% of the job 
vectors are unique and have on average 8.86% assigned feature values.

CareerBuilder12 The dataset contains job applications from a period of almost 
three months. No other interaction types are present in this dataset. The sessions 
are created via a time-based split of 30 min. Due to the nature of job applications, 
most sessions contain very few interactions. The interactions in the dataset happen 
over 13 weeks. Thus, similar to the other two datasets, it happens over almost three 

12 https ://www.recsy schal lenge .com/2017.

https://www.recsyschallenge.com/2017
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months, i.e., from April 2012 to June 2012. The sessions have, on average, 5.64 job 
applications per session, whereas the median is 4 applications per session.

Regarding content features, the CareerBuilder12 dataset contains textual descrip-
tions of the jobs as well as categorical data for the location. From the content data, 
the 55 different states are used in the form of one-hot encodings. Since in our work, 
we utilize categorical job features as input to our models, we additionally inferred 
categorical topics for each of the 3 textual features (i.e., title, description and 
requirements). That is, for every textual feature, we trained a separate latent Dir-
ichlet allocation (LDA) model from which we extracted 20 distinct topics. This pro-
cedure resulted in every job posting having a requirement, title and description topic 
assigned to them. Thus, the resulting feature vector of a job posting is of size 115. 
For this largest dataset, 13.46% of vectors are unique, and those vectors have only 
2.58% assigned feature values.

4.3  Evaluation protocol

We employ a time-based split on all three datasets to create train and test sets. For 
this, we put the sessions from the last 14 days (i.e., 2 weeks) in the test set of the 
respective dataset and use the remaining sessions for training. For each set, we 
keep only sessions with a minimal number of 3 interactions.13 Like (Quadrana et al. 
2017), we filter items in the test set that do not belong to the train set as this ena-
bles a better comparison with model-based approaches (e.g., RNNs), which can only 
recommend items that have been used to train the model. In Studo, this procedure 
results in 23, 738 sessions to train and 3047 to test the approaches. For the RecSys17 
dataset, this results in 12, 712 sessions for training and 3610 sessions for testing. In 
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Fig. 4  Our evaluation protocol for one exemplary session consisting of four jobs. We distinguish between 
(1) comparing the recommended jobs with the remainder of the interactions in a session (left) and (2) 
comparing the recommended jobs with the next job interaction (right)

13 We chose 3 for the minimum amount of interaction as it is the lowest median of interactions in a ses-
sion across all three datasets, as reported in Sect. 4.2.



633

1 3

Using autoencoders for session-based job recommendations  

the case of the much larger CarrerBuilder12 dataset, the train set contains 108, 783 
sessions, whereas the test set has 11, 364 sessions.

Training and testing the algorithms We first train all approaches on the respec-
tive training data. In order to evaluate the performance of the utilized session-based 
recommendation algorithms, for each session in the test data, we iteratively subsam-
ple its interactions. That is, after each session interaction, we recommend 20 jobs 
for the current target session state and compare the predictions with the remaining 
interactions. We start this procedure for every session after the first interaction and 
end before the last one. In this setting, as shown in Fig. 4, we explore two evaluation 
cases: comparing the recommended jobs with (1) the remainder of the interactions 
in the session and (2) with the next job interaction (i.e., next item prediction; same 
as in Hidasi and Karatzoglou 2018; Hidasi et al. 2015).

For our proposed method, that uses content features in combination with user 
interactions to encode the input for the autoencoders (i.e., as described in Sect. 3.2), 
we use the top 25 recent job interactions to infer the session representation. That is, 
we set the parameter m = 25 as more than 98% of all sessions in Studo, and almost 
all sessions in the RecSys17 dataset do not have more than 25 job interactions (i.e., 
as shown in Fig. 3).

Hyperparameter optimization To optimize hyperparameters, we further split 
the train sets by the same time-based split to generate validation sets. Thus, we use 
the last 2 weeks of the train set as a separate validation set and the remaining ses-
sions to train our models. The resulting split for the Studo dataset is 19, 245 sessions 
in the validation train set and 3273 sessions in the validation test set. For the Rec-
Sys17 dataset, we have 8001 sessions in the validation train set and 2046 sessions in 
the validation test set. In case of CareerBuilder12, the validation train set contains 
51,  717 sessions and the validation test set 10,  574 sessions. Note that some ses-
sions did no longer have the minimal number of 3 interactions and were filtered out. 
As a consequence, the combination of the validation train and validation test set is 
smaller than the original train set. The results of the hyperparameter optimization 
step are described in Sect. 5.3.

4.4  Evaluation metrics

We quantify the recommendation performance of each approach concerning accu-
racy and beyond-accuracy metrics like system-based and session-based novelty. 
More specifically, in our study, we use the following performance measures:

Normalized Discounted Cumulative Gain (nDCG) nDCG is a ranking-depend-
ent metric that measures how many jobs are predicted correctly. Also, it takes the 
position of the jobs in the recommended list into account (Parra and Sahebi 2013). It 
is calculated by dividing the DCG of the session’s recommendations with the ideal 
DCG value, which is the highest possible DCG value that can be achieved if all 
the relevant jobs would be recommended in the correct order. The nDCG metric is 
based on the Discounted Cumulative Gain (DCG@k), which is given by Parra and 
Sahebi (2013):
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where rel(i) is a function that returns 1 if the recommended job at position i in the 
recommended list is relevant. nDCG@k is calculated as DCG@k divided by the 
ideal DCG value iDCG@k, which is the highest possible DCG value that can be 
achieved if all the relevant jobs would be recommended in the correct order. Over all 
the sessions, it is given by:

Mean reciprocal rank (MRR) MRR is another metric for measuring the accuracy 
of recommendations and is given as the average of the reciprocal ranks of the first 
relevant job in the list of recommended jobs, i.e., 1 for the first position, 1

2
 for the 

second position, 1
3
 for the third position and so on. This means that a high MRR is 

achieved if relevant jobs occur at the beginning of the recommended jobs list (Voor-
hees 1999). Formally, it is given by Aggarwal (2016):

Here, Hs is the history of the current session s and rank(Hj,Rk) is the position of the 
first relevant job Hj in the recommended job list Rk.

System-based novelty (EPC) System-based novelty denotes the ability of 
a recommender to introduce sessions to job postings that have not been (fre-
quently) experienced before in the system. A recommendation that is accurate but 
not novel will include items that the session user enjoys, but (probably) already 
knows. Optimizing system-based novelty has been shown to have a positive, trust-
building impact on user satisfaction (Pu et  al. 2011). Moreover, system-based 
novelty is also an important metric for the job domain since applying to popular 
jobs may decrease a user’s satisfaction due to high competition and less chance 
of getting hired (see, e.g., Kenthapadi et al. 2017). In our experiments, we meas-
ure the system-based novelty using the expected popularity complement (EPC) 
metric introduced by Vargas and Castells (2011). In contrast to solely popularity-
based metrics (e.g., Zhou et al. 2010), EPC also accounts for the recommendation 
rank and the relevance for the current session. Thus, the system-based novelty 
novsystem(Rk|s) for the recommendation list Rk of length k for session s is given by:

Here, disc(i) is a discount factor to weight the recommendation rank i [i.e., 
disc(i) = 1∕log2(i + 1) ] and p(rel|Ri, s) is 1 if the recommended job Ri is relevant for 
session s or 0 otherwise (i.e., only jobs that are in the current session history are taken 

DCG@k =

k∑

i=1

2rel(i) − 1

log(1 + i)
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into account). Finally, p(seen|Ri) defines the probability that a recommended job Ri 
was already seen in the system, i.e., p(seen|Ri) = log2(popRi

+ 1)∕log2(popMAX + 1).
Session-based novelty (EPD) In contrast to system-based novelty, session-based 

novelty incorporates the semantic content of jobs and represents how surprising 
or unexpected the recommendations are for a specific session history (Zhang et al. 
2012). Given a distance function d(Hi,Hj) that represents the dissimilarity between 
two jobs Hi and Hj , the session-based novelty is given as the average dissimilarity 
of all job pairs in the list of recommended jobs Rk and jobs in the current session 
history Hs (Zhou et al. 2010). In our experiments, we use the cosine similarity to 
measure the dissimilarity of two job postings using a raw job vector, which contains 
1 if a session interacted with it and 0 otherwise. Again, we use the definition by 
Vargas and Castells (2011) that takes the recommendation rank as well as the rel-
evance for the current session into account. Hence, we measure the session-based 
novelty novsession(Rk|s) for the recommendation list Rk of length k for session s by the 
expected profile distance (EPD) metric:

Here, Hs is the current history of a session s and disc(i) as well as p(rel|Ri, s) are 
defined as for the EPC metric for measuring the system-based novelty.

Coverage With coverage (Adomavicius and Kwon 2012; Ludewig and Jannach 
2018), we assess how many jobs a recommender approach can cover with its predic-
tions. As such, we additionally report the job coverage of each evaluated algorithm. 
We define the coverage as the ratio between the jobs that have been recommended 

EPD@k =
1

|S|
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1
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∑
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Fig. 5  The figures show the influence of the neighborhood size k for picking top-k similar sessions when 
comparing the three autoencoder variations on both interaction data and combined data. We find that the 
recommendation accuracy converges when k is picked to be around 60 or more
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and jobs that would be available for recommendation. Here, we make a distinction 
between coverage types and report the job coverage (1) on the full dataset, i.e., how 
many of all available jobs can we recommend, and (2) on the test dataset, i.e., how 
many of the jobs can we recommend that we expect to be interacted with during a 
session.

5  Results

In this section, we present our experimental results. We first compare the perfor-
mance of the respective models when used in a k-nearest neighbor manner and then 
analyze the embedding space of the best-performing autoencoder model. After that, 
we show the best hyperparameter configurations used for the baseline approaches 
and then discuss the performance of our approach compared to these baselines.

5.1  Comparing the recommendation performances of autoencoders

We compare the recommendation performance of all three variants of autoencoders, 
i.e., AE, DAE, VAE, trained on interactions as well as on content. This results in 
six autoencoder variants in total. We train all autoencoder models for a maximum 
of 50 epochs or until the error on the validation test set converges. We made addi-
tional experiments and incorporated the self-attention mechanism on the encoder 
layer (e.g., as in Lin et al. 2017; Parikh et al. 2016; Vaswani et al. 2017). We did not 
find any major improvements, so we do not report the results of these 6 additional 
autoencoder models.

Figure 5 shows the results of the autoencoder comparison in terms of nDCG@20. 
We compare the results across different values for the neighborhood size k, rang-
ing from 10 to 100. We find that VAEInt , which only uses interactions to encode the 
input vector, outperforms all other approaches on the Studo and RecSys17 datasets. 
When combining interaction data with content features (i.e., AEComb , DAEComb and 
VAEComb ), VAEComb performs the best on the Studo dataset and slightly worse than 
DAEComb on the RecSys17 dataset. For the CareerBuilder12 dataset, all approaches 
except the VAEInt approach have a similar performance. Such accuracy performance 
for VAEInt suggests that having a much larger item space can be problematic for 
the generative autoencoder variant. As the variational autoencoder outperforms the 
other approaches in the majority of the configurations, in the next step, we com-
pare it to the baseline methods. Furthermore, we find that for all autoencoders, accu-
racy converges after k = 60 . Thus, in Sect. 5.4, we report the results of VAEInt and 
VAEComb using top-60 similar sessions for recommendation.

5.2  Embedding analysis

To better understand the autoencoder models’ actual effectiveness, we employ the 
t-SNE algorithm (Maaten and Hinton 2008) to visualize the embedding spaces. 
The t-SNE method enables us to visualize high-dimensional data. It reduces the 
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dimensionality of the latent session representations and lets us explore embeddings 
in a 2D space. In t-SNE plots, similar items are modeled by neighboring points with 
high probability. In our case, we expect similar sessions to form clusters of neigh-
boring points in the 2D space.

Figures 6 and 7 show the variational autoencoder models as t-SNE plots for 
all three datasets, i.e., VAEInt trained on interactions and VAEComb trained on 
interactions combined with job content (see “Appendix B” for a more detailed 
embedding analysis). In the case of the smallest dataset Studo, when we train 
the autoencoder only on interactions, more clusters are produced with sessions 
of different sizes close to each other (e.g., Fig. 6a). If the variational autoencod-
ers are additionally trained on the job content, we can observe rainbow-colored 
shapes that are based on session length (e.g., as shown in Fig.  7a, b). In the 
larger CareerBuilder12 dataset, we end up with several sub-clusters that exhibit 

VAEInt

(a) Studo (b) RecSys17

(c) CareerBuilder12

Fig. 6  The plots show t-SNE embeddings for latent session representations produced with the VAE 
autoencoder models trained on all three datasets using only interaction data. The colors of the sessions 
reflect the session length, where the same red color is used for sessions with 20 or more interactions
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this rainbow pattern. In other words, when we encode the input with content fea-
tures, sessions of similar length tend to cluster. We attribute this to sessions of 
similar length having similar patterns of input vectors (e.g., many right-padded 
zeros for short sessions).

Next, we investigate the difference in recommendation accuracy between 
VAEInt and VAEComb in light of the clustering patterns. The results suggest that 
when sessions cluster by similar size in the 2D space, as in the case of VAEComb 
in the Studo and RecSys17 datasets and VAEInt in the CareerBuilder12 dataset, 
recommendation accuracy drops.

VAEComb

(a) Studo (b) RecSys17

(c) CareerBuilder12

Fig. 7  The plots show t-SNE embeddings for latent session representations produced with the VAE 
autoencoder models trained on all three datasets using interaction data combined with the job content. 
The colors of the sessions reflect the session length, where the same red color is used for sessions with 
20 or more interactions
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5.3  Hyperparameter optimization of the baseline approaches

We conducted a grid search on the hyperparameters for the baseline approaches 
using the validation set, i.e., two weeks of user interactions. As such, Table 3 reports 
on the best performing configurations for each approach and dataset in terms of rec-
ommendation accuracy (see “Appendix A” for more details).

BPR We performed a grid search that includes three different values for the reg-
ularization of session features �SESSION ∈ {0.0, 0.25, 0.5} and the regularization of 
item feature �ITEM ∈ {0.0, 0.25, 0.5}.

iKNN For the iKNN approach, we evaluated the values for regularization (i.e., to 
avoid coincidental high similarities of rarely visited items) � ∈ {20, 50, 80} and the 
normalization factor for the support between two items � ∈ {0.25, 0.5, 0.75}.

sKNN, S-sKNN and V-sKNN For all the sKNN variations that we utilize in this 
paper, we conducted a grid search for the parameter k (i.e., 100, 200, 500 or 1000), 

Table 3  Best performing hyperparameter settings for each evaluated baseline approach and dataset based 
on nDCG@20

Approach Parameter Studo RecSys17 CareerBuilder12

BPR �
SESSION

0.25 0 0
�
ITEM

0.25 0 0
iKNN � 80 50 20

� 0.75 0.75 0.75
sKNN k 100 500 1000

SAMPLING Recent Random Random
SIMILARITY Cosine Cosine Jaccard
POPULARITY BOOST No No Yes

S-sKNN k 100 500 1000
SAMPLING Recent Random Random
SIMILARITY Cosine Jaccard Cosine
POPULARITY BOOST No No Yes

V-sKNN k 100 100 100
SAMPLING Recent Random Random
SIMILARITY Cosine Cosine Cosine
POPULARITY BOOST No No No
WEIGHTING Quadratic Quadratic Logarithmic

GRU4Rec LOSS top1-max bpr-max-0.5 top1-max
LAYERS [100] [100] [1000]
DROPOUT 0.2 0.2 0.2
BATCH SIZE 32 32 32

pRNN ACTIVATION tanh tanh softmax
LAYERS [1000] [100] [1000]
� 0.001 0.01 0.001
BATCH SIZE 512 512 512
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Table 4  Prediction results ( k = 20 ) of remaining jobs that will be subject to interaction within a session. 
(Color table online)
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the sampling method of sessions (i.e., recent or random), the similarity function 
(i.e., cosine or Jaccard) and if popular items from neighboring sessions should be 
boosted. For V-sKNN, we also optimized the decay weighting function (i.e., divi-
sion, logarithmic or quadratic).

GRU4Rec In the case of GRU4Rec, we experimented with two different loss 
functions {top1-max, bpr-max-0.5} , four variations of the number of GRU layers and 
their sizes {[100], [100, 100], [1000], [1000, 1000]} , a dropout applied to the hidden 
layer of {0.0, 0.2, 0.5} and batch sizes of {32, 128, 512}.

pRNN For the pRNN approach, we explored two activation functions {softmax , 
tanh} for the output layer, two sizes for the GRU layers {[100], [1000]} , a learning 
rate � ∈ {0.01, 0.001} and batch sizes of {32, 128, 512} . With respect to the batch 
size, however, due to the computational complexity of pRNN and the size of Career-
Builder12, we were only able to tune this hyperparameter for Studo and RecSys17. 
As we received the best results for a batch size of 512 for both datasets, we also used 
a batch size of 512 in case of CareerBuilder12.

5.4  Comparison with baseline approaches

Table 4 shows the results of comparing VAEInt and VAEComb with all baseline meth-
ods when we evaluate against the remaining jobs in the session. We report recom-
mendation accuracy in terms of nDCG and MRR, as well as a system-based nov-
elty (EPC), session-based novelty (EPD) and coverage. In the case of the next job 
prediction problem, in Figs. 8 and 9, we show nDCG and EPC results for different 
values of k (i.e., number of recommended jobs).

Accuracy (nDCG & MRR) On all datasets, the sKNN-based approaches achieve 
high accuracy in terms of nDCG and MRR, as shown in Table 4. In terms of both 
nDCG and MRR, VAEInt performs second best in RecSys17, while it performs 
third best in Studo. For the Studo dataset, GRU4Rec has the highest accuracy for 
both metrics. In the RecSys17 dataset, BPR-MF performs best concerning nDCG, 
while POP performs best in terms of MRR. In CareerBuilder12, V-sKNN achieves 
the highest nDCG, while iKNN achieves the highest MRR. In this dataset, VAEInt 
achieves medium performance, which we attribute to the ample item space and spar-
sity of CareerBuilder12. The VAEComb method, however, results in a higher recom-
mendation accuracy, while training the model is much less expensive.

While the performance of sKNN-based approaches is rather stable, several base-
lines algorithms, namely POP, BPR-MF, iKNN, Bayes, GRU4Rec and pRNN, show 

Coverage is reported for the ratio of recommended jobs compared to all jobs available in the data set 
(left) and jobs expected in the test set (right)

Table 4  (continued)
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(a) Studo

(b) RecSys Challenge 2017

(c) CareerBuilder 2012

Fig. 8  nDCG results for different recommendation list sizes (i.e., values of k) when predicting the next 
job in the session. On all three datasets, both our proposed VAE approaches achieve competitive results 
concerning accuracy (i.e., nDCG) metrics
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(a) Studo

(b) RecSys Challenge 2017

(c) CareerBuilder 2012

Fig. 9  EPC results for different recommendation list sizes (i.e., values of k) when predicting the next job 
in the session. On all three datasets, both our proposed VAE approaches achieve good results concerning 
beyond-accuracy (i.e., EPC) metrics



644 E. Lacic et al.

1 3

notable differences among the datasets. First, the Bayes approach establishes itself 
as a competitive baseline in the Studo dataset, whereas it results in a poor perfor-
mance for the two larger datasets (i.e., RecSys17 and CareerBuilder12). In fact, for 
the RecSys17 dataset, it results in the worst performance. Hence, when the domain 
has a small number of items, it can be reasonable to employ such a simple and com-
putationally inexpensive method.

Second, the accuracy of POP in the RecSys17 dataset is noteworthy.14 The rea-
son for this is that in the RecSys17 dataset, the most popular job from the train set 
was also the one with the highest number of interactions in the test set (i.e., around 
21.5% ). However, this approach will likely not result in high user satisfaction, just by 
predicting the same items repeatedly. Moreover, the BPR-MF performs best in terms 
of nDCG in the RecSys17 dataset, but it has the second worst performance in the 
other two datasets. Also, GRU4Rec performs worse for the RecSys17 dataset when 
compared to Studo and CareerBuilder12. We attribute this to bias toward popularity 
(Ludewig and Jannach 2018). The performance of GRU4Rec is low, while the per-
formance of BPR-MF is high in the RecSys17 dataset. The pRNN method performs 
low on all three datasets, but its recommendation accuracy is especially weak on 
the CareerBuilder12 dataset. Finally, the performance of the iKNN differs among 
all three datasets. While it has the highest MRR for the CareerBuilder12 dataset, the 
performance in the RecSys17 dataset is the second lowest for both accuracy metrics.

For the next job prediction problem shown in Fig.  8, in all three datasets, all 
approaches show a similar accuracy performance. The results confirm the presence 
of bias toward popular items in the RecSys17 dataset as the popularity approach 
outperforms the other algorithms until k = 3 , after which BPR-MF becomes the best 
performing approach. We also attribute the sudden increase in the nDCG values for 
BPR-MF and pRNN at the recommendation list of length 4 to this popularity bias 
in the dataset. A closer inspection revealed that both approaches often recommend 
highly popular items from the train set at the beginning of the recommendation list. 
The top-1 (i.e., most popular) item that is shared between the train and test set is 
also the one which gets recommended most frequently as the fourth item in the rec-
ommendation list of BPR-MF and pRNN. Besides that, for all values of k (i.e., the 
number of recommended jobs), the session-based KNN approaches and GRU4Rec 
achieve competitive accuracy values.

System-based novelty (EPC) As shown in Table 4, both VAE approaches achieve 
top results in terms of EPC for all three datasets. VAEInt performs best on the Rec-
Sys17 dataset, while VAEComb outperforms all approaches in the CareerBuilder12 
dataset. In the Studo dataset, VAEInt achieves second best to GRU4Rec. Especially 
in the RecSys17 dataset, the difference in novelty is considerably high when com-
pared to other baselines. For the baselines, the sKNN approaches and GRU4Rec both 
exhibit a good performance concerning the novelty of the recommended jobs. The 
pRNN method, as well as POP and BPR-MF, produces recommendations that have 
the lowest system-based novelty.

14 Quadrana et al. (2017) report that their popularity approach outperforms session-based RNN (Hidasi 
et al. 2015) in the XING dataset used in the ACM RecSys Challenge 2016.



645

1 3

Using autoencoders for session-based job recommendations  

In Fig. 9, we see that both our proposed VAE approaches outperform all others in 
the CareerBuilder12 dataset after k = 9 . The sKNN baselines, as well as GRU4Rec, 
show a better novelty performance for a smaller number of recommended jobs.

Session-based novelty (EPD) As depicted in Table  4, both VAE approaches 
provide the best session-based novelty for the RecSys17 and CareerBuilder12 data-
sets and are competitive in the Studo dataset. The VAEComb method generates the 
most surprising recommendations in the largest dataset (i.e., CareerBuilder12) 
and GRU4Rec in the smallest dataset (i.e., Studo). In all cases, the sKNN-based 
approaches are a competitive baseline. We can observe the most notable difference 
between accuracy and EPD, however, in the CareerBuilder12 dataset, where the VAE 
approaches result in a rather average accuracy while performing very well concern-
ing session-based novelty. Overall, the results indicate that both VAE approaches are 
suitable for cases when we aim to generate novel session-based recommendations.

Coverage In Table 4, we report the percentage of jobs, which were recommended 
and are a part of (1) all jobs available in the dataset (i.e., the complete item catalog), 
and (2) the jobs that we know anonymous session users will interact within the test 
set (i.e., the expected item catalog).

In terms of the coverage of all possible job postings, VAEComb performs best in 
the Studo dataset. BPR-MF covers at the most the entire item catalog in the Rec-
Sys17 and CareerBuilder12 dataset. Concerning the coverage of items in the test 
set (i.e., expected items), the session-based KNN approaches achieve almost per-
fect coverage in the Studo dataset. Only in the case of the RecSys17 dataset, the 

Table 5  Summary of the rankings of the session-based algorithms evaluated in the job domain. (Color 
table online)

“++” indicates best, “+” good, “o” average, “-” low and “- -” the worst ranking with respect to (1) accu-
racy (i.e., nDCG and MRR), (2) beyond-accuracy (i.e., EPC and EPD) and (3) coverage
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BPR-MF baseline has an even higher coverage. As expected, the POP baseline 
results in the worst coverage. While this baseline has high accuracy values in the 
RecSys17 dataset (due to the popularity bias inherent in this dataset), it effectively 
covers only a small fraction of jobs in the system. It also has to be noted that the 
pRNN baseline always has the second-worst coverage. As the available item catalog 
grows, the coverage drops, which suggests that the trained model focuses on a spe-
cific (i.e., relatively small) set of items, which explains the worse performance in the 
largest dataset (i.e., CareerBuilder12).

5.5  Performance overview

To provide a better overview of the performance of the different session-based job 
recommendation approaches, we summarize all results in Table  5 with respect to 
three metric categories. That is, we report the performance on accuracy (i.e., nDCG 
and MRR), beyond accuracy (i.e., EPC and EPD) and coverage (of the whole dataset 
and the test set). For every approach, we assign a rank (i.e., from 1 to 11) for the par-
ticular metric in a dataset. We then aggregate these rankings across all three metric 
categories and datasets. The final rankings are then normalized and assigned into 
five performance buckets (i.e., from worst “- -” to best “++”; see “Appendix C” for 
the calculation steps).

Concerning accuracy, the best performance is achieved by V-sKNN, our VAEInt 
variant, S-sKNN and GRU4Rec. This is then followed by VAEComb and sKNN. 
All other baselines achieve worse accuracy. For the beyond accuracy metric cate-
gory, both of our VAE variants achieve the best performance. This is followed by 
GRU4Rec and the sKNN variants. A similar observation can be made for the metric 
category coverage. Here, however, BPR-MF also shows the best, iKNN good and the 
simple Bayes baseline medium coverage. Noteworthy is also the ranking score of the 
VAEComb , as with our proposed method it is possible to train the autoencoder models 
faster (i.e., even with a large item space) and without the need to frequently retrain 
the utilized model to consider new jobs coming to the system. The pRNN approach 
did not achieve a good rank in any metric category. The same is true for POP.

6  Conclusion and future work

In this work, we addressed the problem of providing job recommendations in an 
anonymous, online session setting. In three datasets, i.e., Studo, RecSys17 and 
CareerBuilder12, we evaluated the efficacy of using different autoencoder archi-
tectures to produce session-based job recommendations. Specifically, we utilized 
autoencoders to infer latent session representations, which are used in a k-nearest 
neighbor manner to recommend jobs within a session. We evaluated two types of 
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input for the autoencoders: (1) interactions with job postings within browsing ses-
sions and (2) a combination of interactions with job postings and content features 
extracted from these job postings.

We found that variational autoencoders trained on interaction and content data, 
and used in a k-nearest neighbor manner, led to very good results in terms of accu-
racy compared to other autoencoder variants. A visual analysis of the embedding 
spaces with t-SNE revealed that we could attribute a lower accuracy performance 
when similar-sized sessions form clusters in the 2D space. Although this was mostly 
the case for autoencoders trained on content features, in practice, however, such an 
approach has the advantage of fixed size vectors, which means retraining is needed 
less often. Consequently, depending on the application scenario, one can decide 
which input for the variational autoencoder to take, i.e., to balance frequent retrain-
ing and accuracy.

Furthermore, we evaluated all autoencoder and baseline approaches with respect 
to beyond-accuracy metrics, i.e., system-based and session-based novelty as well as 
coverage, in two settings: Firstly, we compared the recommendation performance of 
the approaches on all remaining interactions within a session, and secondly, we pre-
dicted the next job interaction in the session. We find that our proposed variational 
autoencoder methods can outperform state-of-the-art approaches for sessions-based 
recommender systems with respect to system-based and session-based novelty. 
Besides, the session-based KNN approaches are a competitive baseline for the vari-
ational autoencoder methods with respect to accuracy and coverage.

For future work, we aim to explore the use of generative variational autoencoder 
models to directly recommend jobs from the reconstructed session vector (e.g., in a 
similar way as in Liang et al. 2018). Other ideas for future work include investigat-
ing all approaches used in this study in an online evaluation. We plan to conduct 
an online study to ask users how satisfied and surprised they are with job recom-
mendations generated by autoencoders. Also, we plan to evaluate the accuracy in 
an A/B test to conclude whether a higher system-based and session-based novelty 
in a session-based offline setting leads to higher user satisfaction. Additionally, 
we also plan to directly optimize for the beyond-accuracy metrics by incorporat-
ing re-ranking techniques (e.g., maximum marginal relevance Carbonell and Gold-
stein 1998). These evaluations are planned to be carried out in the Talto  15 career 
platform. In summary, we hope that the approach presented in this paper will 
attract further research on the effectiveness of dimensionality reduction techniques 

15 Talto (https ://talto .com) is the successor of the jobs platform in Studo (http://www.studo ).

https://talto.com
http://www.studo


648 E. Lacic et al.

1 3

for session-based job recommender systems and the effect of such methods on 
beyond-accuracy metrics such as system-based and session-based novelty as well as 
coverage.

Limitations Our work has several limitations. So far, we only focused on autoen-
coders to infer the latent representation of the anonymous user session. While 
autoencoders are a popular choice to reduce the dimensionality of data, other deep 
neural networks such as restricted Boltzmann machines (Nguyen et al. 2013), deep 
belief networks (Srivastava and Salakhutdinov 2012) or convolutional neural net-
works (Shen et al. 2014) could also serve well for this task. Furthermore, additional 
metadata information about jobs (e.g., textual content of job postings) could poten-
tially enhance recommendations, which we did not tackle due to the unavailabil-
ity of such data in all datasets. So far, we did not compare the approaches used in 
this study concerning computational performance, like the authors of (Ludewig and 
Jannach 2018) did. Moreover, in this work, we did not investigate how to model 
repeated interactions on the same job postings. Although this is implicitly consid-
ered by the autoencoder variants that combine interactions with job content features, 
such actions are not taken into account by the autoencoders that solely rely on inter-
action data. Also, in this work, we extracted the candidate sessions based on the 
last job interaction, which is a limitation of our work. For the evaluation procedure, 
we used a single time-based split for our experiments. One approach to assess the 
robustness of our results would be to apply a sliding window approach to generate 
splits with varying lengths. However, the size of the Studo and RecSys17 datasets 
is limited, which makes such an approach infeasible. For the larger CareerBuilder 
dataset, a sliding-window-based evaluation approach could be applied to test the 
robustness of the method. Due to computational constraints, for the present work, 
we used the same time-based split as for the Studo and the RecSys17 datasets. We 
leave the exploration of more splits to future work.

Another limitation is that one of the datasets we used for our study, the Studo 
dataset, is proprietary, and due to the terms of service of Moshbit, the owner of 
Studo, it cannot be made available for others at this point.
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Appendices

Fig. 10  Accuracy results for the different hyperparameters of the baseline approaches on the Studo data-
set

Fig. 11  Accuracy results for the different hyperparameters of the baseline approaches on the RecSys17 
dataset
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Hyperparameter optimization results

In this section, we report the distribution of the accuracy results achieved by opti-
mizing the hyperparameters for the baseline approaches in Sect. 5.3. For each base-
line approach, we pick those hyperparameters which showed the best performance 
with respect to nDCG@20. As such, Fig. 10 shows the differences between the eval-
uated baseline configurations on the Studo dataset. Respectively, Fig. 11 depicts the 
results for the RecSys17 and Fig. 12 for the CareerBuilder12 dataset.

Autoencoder embedding analysis

Figure  13 shows all autoencoder models as t-SNE plots for the Studo dataset, 
i.e., AEInt , DAEInt and VAEInt trained on interactions and AEComb , DAEComb and 
VAEComb trained on the combination of interactions and job content. The same is 
reported for RecSys17 in Fig. 14 and CareerBuilder12 in Fig. 15.

The results indicate that both denoising autoencoders and variational autoen-
coders tend to produce more session clusters than a classic autoencoder, which 
creates more of a linear pattern of neighboring sessions. In some cases, we can 
observe that both the classic and denoising autoencoder models produce shapes 
without clear structure and large dispersion (e.g., see Fig.  13d or  15b), which 
indicates that it is hard to find a clear neighborhood of similar sessions. For the 
smaller Studo dataset, if the autoencoders are solely trained on interactions, i.e., 
AEInt , DAEInt and VAEInt , more clusters are produced with sessions of different 

Fig. 12  Accuracy results for the different hyperparameters of the baseline approaches on the Career-
Builder12 dataset
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Studo

Int Int Int

Comb Comb

(a) AE (b)DAE (c) VAE

(d)AE (e) DAE (f) VAEComb

Fig. 13  t-SNE embeddings for latent session representations produced with the three autoencoder models 
trained on interaction and content data from the Studo dataset. Sessions are colored according to their 
length, where the same red color is used for sessions with 20 or more interactions

RecSys17

Int Int Int

Comb Comb

(a) AE (b) DAE (c) VAE

(d) AE (e) DAE (f) VAEComb

Fig. 14  t-SNE embeddings for latent session representations for the RecSys17 dataset
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sizes close to each other (e.g., Fig.  13b, c). Interestingly, if autoencoders are 
trained on content, we can observe rainbow-colored shapes that are based on ses-
sion length (e.g., as shown in Fig. 13e, f). In case of a larger dataset like Career-
Builder12, we end up with several sub-clusters that exhibit this rainbow pat-
tern. This shows that when we encode the input with content features, sessions 
of similar length tend to cluster. We attribute this to sessions of similar length 
having similar patterns of input vectors (e.g., many right-padded zeros for short 
sessions).

Aggregation of rankings

In Sect. 5.5, we report the aggregated performance of the different approaches. For 
this, in Table 6 we first rank the results from each dataset (i.e., based on Table 4). 
We then sum the rankings for each dataset (i.e., Studo, RecSys17 and Career-
Builder12) for the accuracy metrics (i.e., nDCG and MRR), the beyond-accuracy 
metrics (i.e., EPC and EPD) and both coverage, respectively. The aggregated rank-
ings are outlined in Table  7. The rankings are then normalized with the equation 

CareerBuilder12

Int Int Int

Comb Comb

(a) AE (b) DAE (c) VAE

(d) AE (e) DAE (f) VAEComb

Fig. 15  t-SNE embeddings for latent session representations for the Careerbuilder12 dataset
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Table 6  Ranking of the results per metric and dataset, which are derived from numerical results. (Color 
table online)

Coloring is according to the rank within each dataset
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Norm(x) =
x−min+1

max−min+1
 , where min is the lowest aggregated rank and max is the high-

est aggregated rank. Thus, lower results are considered better, while the worst results 
receive the value 1. The results are then put into five buckets according to their val-
ues. A double plus (i.e., ++ ) is assigned to values between 0.0 and 0.2, while values 
between 0.2 and 0.4 get assigned a single plus (i.e., + ), followed by o (i.e., 0.4 until 
0.6), − (i.e., 0.6 until 0.8) and for the worst results a −− (i.e., 0.8 until 1). 
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