
Multiperspective and Multidisciplinary Treatment of Fairness in
Recommender Systems Research

Markus Schedl
Navid Rekabsaz

markus.schedl@jku.at
navid.rekabsaz@jku.at

Johannes Kepler University (Insitute
of Computational Perception) and

Linz Institute of Technology (AI Lab)
Linz, Austria

Elisabeth Lex
elisabeth.lex@tugraz.at

Graz University of Technology
(Institute of Interactive Systems and

Data Science)
Graz, Austria

Tessa Grosz
Elisabeth Greif
tessa.grosz@jku.at

elisabeth.greif@jku.at
Johannes Kepler University (Institute

for Legal Gender Studies)
Linz, Austria

ABSTRACT
In the communities of UMAP, RecSys, and similar venues, fairness
of recommender systems has primarily been addressed from the
perspective of computer science and artificial intelligence, e.g., by
devising computational bias and fairness metrics or elaborating de-
biasing algorithms. In contrast, we advocate taking a multiperspec-
tive and multidisciplinary viewpoint to complement this technical
perspective. This involves considering the variety of stakeholders
in the value chain of recommender systems as well as interweaving
expertise from various disciplines, in particular, computer science,
law, ethics, sociology, and psychology (e.g., studying discrepancies
between computational metrics of bias and fairness and their actual
human perception, and considering the legal and regulatory context
recommender systems are embedded in).
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1 INTRODUCTION
Recommender systems (RSs) impact our day-to-day decisions by,
e.g., deciding on the content we are exposed to on the web, or
what products to buy, thereby narrowing our view of the world.
They create for their users personalized recommendation lists of
items selected from a commonly very large item catalog [43]. While
RSs are incredibly useful tools that guide their users through the
massive amounts of digital content nowadays available, several
studies, e.g., [16, 27, 30, 31, 34, 42, 54], show that different parts of
a RS can cause or amplify manifold biases. Some of these biases can
be harmful because they result in unfair or discriminating treatment
of certain users or groups of users [17, 19], which often is ethically
and legally problematic.
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While there are numerous efforts in the research communities
behind UMAP, RecSys, SIGIR, and similar venues to identify biases
in RSs and ensure RSs treat users fairly, they often view the problem
from a technical and quantitative perspective [21]. However, there
is no clear consensus in the community about what is considered
biased or fair,1 how to measure these aspects, and what the social
and legal implications of a biased result of a RS will be in reality.

In this paper, we advocate to establish a broader view on the
topic of fairness in RSs research, including psychological, sociolog-
ical, legal, and regulatory considerations, thereby promoting the
following emerging research topics:

(1) Considering the variety of stakeholders in the value chain
of RSs when investigating biases and fairness of respective
technological solutions (discussed in Section 2).

(2) Raising awareness of likely discrepancies between computa-
tional metrics of bias and fairness and their actual individual
and societal perception (Section 3).

(3) Discussing metrics of bias and fairness as well as technical
debiasing solution in the context of ethical considerations
and legal regulations (Section 4).

1.1 Dimensions of Detrimental Biases
Potentially harmful biases can be categorized according to different
taxonomies, e.g., [4]. However, few if any of them are universally
agreed upon in the scientific community. Nevertheless, we briefly
introduce some of the most important categorization schemes.

In terms of comparing the real world, an ideal world, and their
representation in the RS and output behavior of the RS, we can
distinguish between societal bias and statistical bias. The former
refers to the discrepancy between the system behavior and what
it should be in an ideal world. The latter refers to the discrepancy
between the system behavior and what it should be to reflect the
real world, e.g., [16, 27, 34].

Biases can further be categorized w.r.t. the stage in the recom-
mendation process at which they occur or intensify, as illustrated
in Figure 1. They can be present already in the data the algorithms
are trained on (cf. statistical bias above). For instance, when the
algorithms are provided with an unbalanced dataset w.r.t. certain
attributes, e.g., distribution of genders or ethnicities. Furthermore,

1RSs create personalized recommendation lists, and therefore a certain level of
bias towards items that match the user’s preferences is expected.
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Figure 1: Categories of biases in RSs, according to the stages
of the recommendation process.

the RS algorithm itself can introduce or amplify biases that are sub-
sequently encoded in the learned model. For instance, the models
can reinforce stereotypes such as female users predominantly being
interested in certain types of (often low-paying) jobs, or emotionally
unstable teenagers being fans of metal music. Finally, biases can
also result from the interaction between the user and the RS, which
includes presentation biases of the system and cognitive biases of the
user. Those are strongly tied, since the way recommended items are
presented to the user affects their cognitive processing of the rec-
ommendation list. Examples include serial positioning effects [24],
i.e., users more likely remember the items at the top and the end
of a recommendation list, and decoy effects [46], i.e., items in the
recommendation lists that are very inferior to an alternative (target)
item can improve the perceived quality of the target item [32].

Harmful biases can also be categorized w.r.t. user or item prop-
erties according to which the RS discriminates. The former include
demographic biases (e.g., providing lower utility for some groups
defined by age, gender, or country) [20, 36, 39] and psychological
biases (treating differently user groups with different psychological
traits such as personality) [32, 37, 38]. On the item level, popularity
bias is the most frequently researched bias, e.g., [2, 20, 22, 29, 31, 33].
It refers to an overrepresentation of already popular items in the
recommendation lists of many users.

To quantify detrimental biases and fairness of RSs, various met-
rics have been proposed to measure how much a recommendation
model suffers from a particular bias; see the survey by [4] for a
recent overview of the most relevant metrics. Group fairness met-
rics such as statistical parity [53] or disparate impact [23] compare
the fairness of a recommendation model w.r.t. two or more groups
of users. To that end, Yao et al. [51] propose five fairness metrics
to quantify whether preferences for one group are consistently
overestimated compared to their actual ratings. Abdollahpouri et
al. [3] investigate popularity bias and introduce the Δ𝐺𝐴𝑃 metric to
measure the difference between the average popularity of items in a

user group and their recommendation lists. Individual fairness met-
rics measure if similar individuals receive similar treatments [18].
Such metrics consider the distribution of biases and fairness at an
individual level using inequality measures, e.g., generalized entropy
index [45] or various statistical quantities [31].

1.2 Bias Mitigation Strategies
Approaches to mitigate harmful biases can be categorized accord-
ing to the stage of the recommendation process at which they are
included into pre-processing, in-processing, and post-processing
methods [35]. Pre-processing approaches focus on preparing the
data in such a way that the resulting model and the final recommen-
dations show a lower degree of bias. Examples of such methods are
data rebalancing, i.e., upsampling data from theminority group [36],
and scraping gender-related words in biographies in content-based
job classification/recommendation [15]. In-processing methods aim
at learning a bias-/fairness-aware model, mainly through adding
specific bias/fairness criteria to the optimization procedure. This
includes methods such as regularization, where the loss function
is extended by a bias correction term, and adversarial learning,
where the encoded bias in user-item interaction data is reduced by
models’ internal representations to become agnostic with regard
to a specific protected attribute [8, 25, 42]. Finally, post-processing
approaches typically adopt re-ranking methods that re-organize
a recommendation list created by another recommendation algo-
rithm to enforce a certain bias-reducing ranking of recommended
items [6, 52].

2 MULTISTAKEHOLDER PERSPECTIVES
Creating, maintaining, and using a RS service involves different
stakeholders, e.g., [1, 5, 47]. The most prominent ones — which are
also those targeted most frequently in research on bias mitigation
and fairness improvement of RSs— are the end users of the system,
usually the content consumers of products, job announcements,
movies, music, etc. Nevertheless, other stakeholders do exist, which
are often neglected in research on the topics mentioned above.
These include the creators of the content that is made available
through the RS,2 the providers of the recommendation platform (e.g.,
Netflix, Spotify, Amazon), and policymakers and political institutions
(e.g., EU and national legislation).

All of them have different needs, requirements, and goals, which
sometimes overlap, but sometimes are in conflict with each other.
For instance, consumers are commonly interested in receiving rec-
ommendations that match their taste (similarity), are fresh (novelty),
or cover a wider range of content (diversity), and may be even un-
aware of fairness issues in recommender systems [44]. Creators
typically aim at increasing their items’ exposure, by having them
recommended to many consumers that are likely to interact with
their items. The goals of the RS providers are strongly tied to their
economic success, which may be achieved by realizing an advan-
tage over competitors, often by establishing a unique selling point
by including functionality that increases the user experience of the
RS. Policymakers, on the other hand, sometimes aim at imposing

2Note that, depending on the recommendation domain, the creator of an item may
comprise different persons; for instance, in the case of a movie, including directors,
screenwriters, producers, actors, and actresses.
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certain regulatory limitations, for instance, to require a minimum
quota for items by national content creators. A prominent example
is France, whose Conseil supérieur de l’audiovisuel 3 imposed such
quotas, with an obvious direct impact on the bias and fairness of
the RS ecosystem.

These examples highlight the need for considering the various
stakeholders, with their individual goals, in the discussion of fair-
ness and development of novel RS technology. While first RS ap-
proaches targetingmultistakeholder fairness have emerged recently,
e.g., [7, 48], it is critical to raise awareness among researchers and
developers of recommendation algorithms that optimizing fairness
for one stakeholder may negatively affect others’.

3 PSYCHOLOGICAL AND SOCIOLOGICAL
PERSPECTIVES

We challenge the assumption underlying existing metrics (see Sec-
tion 1.1) that fairness can be measured in a fully objective way
that reflects a common and agreed-upon understanding of what
is considered fair or unfair system behavior. Similar to findings of
user studies, which have shown that perceived recommendation
quality and diversity (among other aspects) differ between users
of RSs, depending on demographics and other factors [28, 41], we
hypothesize that there also exist substantial differences between
computational bias and fairness metrics and the perception of fair-
ness by individuals or groups of individuals defined by common
traits such as gender, age, ethnicity, cultural background, religion,
and beliefs. While this has not yet been investigated in the con-
text of RSs, to the best of our knowledge, psychological studies
on verbal gender descriptions revealed differences in the level of
bias/stereotypes between demographic groups [26]. Also, neuro-
science experiments using transcranial direct current stimulation
showed that gender stereotypes differ based on neural activity and
cultural background [49].

We, therefore, strongly advocate a more holistic perspective
when considering the fairness of RSs, and refrain from considering
existing metrics as universal. We believe that much more research
is needed to investigate and understand the likely discrepancy be-
tween computational notions of bias and fairness in RSs research
and their human perception in relation to psychological, sociologi-
cal, and cultural backgrounds.

4 LEGAL AND REGULATORY PERSPECTIVES
On a legal level, the risks associated with AI applications including
RSs are rapidly gaining importance, with the EU playing a special
role, as it aims at becoming the global standard setter in the reg-
ulation of AI with the Artificial Intelligence Act [14],4 the Digital
Service Act [12],5 and the Digital Market Act [13].6 While not yet
in force once adopted, these three acts will be directly applicable
across the EU. In the meantime, what already applies to RSs, al-
though not specifically tailored to AI, is EU anti-discrimination

3https://www.csa.fr
4https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:

52021PC0206&from=en
5https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:

52020PC0825&from=en
6https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:

52020PC0842&from=en

law [9–11, 40].7,8,9,10 Despite this high density of AI regulation at
the EU level, most of the existing legal literature on bias focuses on
US law. We should close this gap.

With regard to bias in RSs, we recognize a significant diver-
gence: While “fairness” is a concept frequently referred to in the
RSs literature, it is not a legal concept [50]. Instead of fairness,
EU law focuses on the protection of fundamental rights and the
principle of non-discrimination. With regard to the latter, EU anti-
discrimination law addresses discrimination only in certain areas
(mainly employment, access to goods and services, and housing)
and only when certain categories (e.g., gender, ethnicity, religious
belief) are affected. Whether a biased outcome of a RS is discrimina-
tory in a legal sense will depend on the specific context. Moreover,
compliance with fundamental rights or with non-discrimination
law is not a question of measurability, but of either-or. By includ-
ing a multidisciplinary perspective, we should develop a fairness
concept for RSs that is both informed by and compliant with EU
non-discrimination law.

5 CONCLUSION
We briefly reviewed existing notions of (harmful) biases and of
fairness in RSs research, and strategies to mitigate the former while
increasing the latter. We propose to take a holistic and multidis-
ciplinary perspective on RSs’s biases and fairness. This involves
considering the recommendation task as a multistakeholder prob-
lem, including consumers, creators, platform providers, political and
legal institutions. These actors have different goals, some of which
are in agreement, some are contradictory. Determining a tradeoff
between optimizing recommendation algorithms for fairness and
maximizing accuracy is already not an easy task. It becomes even
more complicated when considering the different stakeholders’
needs and aims. Besides, we would like to motivate the more tech-
nical audience (foremost computer scientists and AI researchers)
who design and develop RSs to engage into discussions with ex-
perts from psychology, sociology, cultural studies, ethics, and law.
Even more, we believe that results of empirical studies and models
from these disciplines can be integrated into RSs, as already demon-
strated with psychology-informed RSs [32]. Furthermore, we aim
at establishing a new notion of fairness, which can be influenced
by an individual’s traits, rather than being treated as a universal
and static aspect of a RS.

We are confident that our statements will contribute to the vi-
brant research area of trustworthy artificial intelligence, in particular
research on debiasing and fairness of state-of-the-art RSs.
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